f1(0) -> cons2(0, n__f1(n__s1(n__0)))
f1(s1(0)) -> f1(p1(s1(0)))
p1(s1(0)) -> 0
f1(X) -> n__f1(X)
s1(X) -> n__s1(X)
0 -> n__0
activate1(n__f1(X)) -> f1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__0) -> 0
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
f1(0) -> cons2(0, n__f1(n__s1(n__0)))
f1(s1(0)) -> f1(p1(s1(0)))
p1(s1(0)) -> 0
f1(X) -> n__f1(X)
s1(X) -> n__s1(X)
0 -> n__0
activate1(n__f1(X)) -> f1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__0) -> 0
activate1(X) -> X
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
ACTIVATE1(n__0) -> 01
ACTIVATE1(n__f1(X)) -> F1(activate1(X))
F1(s1(0)) -> P1(s1(0))
F1(s1(0)) -> F1(p1(s1(0)))
ACTIVATE1(n__f1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
f1(0) -> cons2(0, n__f1(n__s1(n__0)))
f1(s1(0)) -> f1(p1(s1(0)))
p1(s1(0)) -> 0
f1(X) -> n__f1(X)
s1(X) -> n__s1(X)
0 -> n__0
activate1(n__f1(X)) -> f1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__0) -> 0
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
ACTIVATE1(n__0) -> 01
ACTIVATE1(n__f1(X)) -> F1(activate1(X))
F1(s1(0)) -> P1(s1(0))
F1(s1(0)) -> F1(p1(s1(0)))
ACTIVATE1(n__f1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
f1(0) -> cons2(0, n__f1(n__s1(n__0)))
f1(s1(0)) -> f1(p1(s1(0)))
p1(s1(0)) -> 0
f1(X) -> n__f1(X)
s1(X) -> n__s1(X)
0 -> n__0
activate1(n__f1(X)) -> f1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__0) -> 0
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
F1(s1(0)) -> F1(p1(s1(0)))
f1(0) -> cons2(0, n__f1(n__s1(n__0)))
f1(s1(0)) -> f1(p1(s1(0)))
p1(s1(0)) -> 0
f1(X) -> n__f1(X)
s1(X) -> n__s1(X)
0 -> n__0
activate1(n__f1(X)) -> f1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__0) -> 0
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F1(s1(0)) -> F1(p1(s1(0)))
POL(0) = 0
POL(F1(x1)) = x1
POL(n__0) = 0
POL(n__s1(x1)) = 0
POL(p1(x1)) = 0
POL(s1(x1)) = 1
0 -> n__0
p1(s1(0)) -> 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
f1(0) -> cons2(0, n__f1(n__s1(n__0)))
f1(s1(0)) -> f1(p1(s1(0)))
p1(s1(0)) -> 0
f1(X) -> n__f1(X)
s1(X) -> n__s1(X)
0 -> n__0
activate1(n__f1(X)) -> f1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__0) -> 0
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
ACTIVATE1(n__f1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
f1(0) -> cons2(0, n__f1(n__s1(n__0)))
f1(s1(0)) -> f1(p1(s1(0)))
p1(s1(0)) -> 0
f1(X) -> n__f1(X)
s1(X) -> n__s1(X)
0 -> n__0
activate1(n__f1(X)) -> f1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__0) -> 0
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__f1(X)) -> ACTIVATE1(X)
Used ordering: Polynomial interpretation [21]:
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
POL(ACTIVATE1(x1)) = 2·x1
POL(n__f1(x1)) = 1 + 2·x1
POL(n__s1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
f1(0) -> cons2(0, n__f1(n__s1(n__0)))
f1(s1(0)) -> f1(p1(s1(0)))
p1(s1(0)) -> 0
f1(X) -> n__f1(X)
s1(X) -> n__s1(X)
0 -> n__0
activate1(n__f1(X)) -> f1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__0) -> 0
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
POL(ACTIVATE1(x1)) = 2·x1
POL(n__s1(x1)) = 2 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f1(0) -> cons2(0, n__f1(n__s1(n__0)))
f1(s1(0)) -> f1(p1(s1(0)))
p1(s1(0)) -> 0
f1(X) -> n__f1(X)
s1(X) -> n__s1(X)
0 -> n__0
activate1(n__f1(X)) -> f1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__0) -> 0
activate1(X) -> X